科学空间:2011年3月重要天象
By 苏剑林 | 2011-03-05 | 29928位读者 | 引用几颗经典行星,将成为3月星空剧场的主角。其中难得一见的水星将迎来一次观测条件很好的东大距,而到了下旬,土星也几乎整夜可见。随着落下时间的逐渐提前,木星的观测条件正逐渐变差。作为晨星的金星升起的时间也正不断推迟,我们将越来越难观测到它的身影。
天象大观
01日 11:40 金星合月: 1.7° S
11日 12:35 月合昴宿星团: 1.8° N
16日 04:16 水星合木星: 2° N
21日 07:21 春分
21日 19:00 月合角宿一: 2.5° N
21日 19:54 天王星合日
23日 08:59 水星大距: 18.6° E
31日 21:25 金星合月: 6.6° S
沐浴问题——调控水温
By 苏剑林 | 2011-03-08 | 25281位读者 | 引用载入正题之前,不妨闲扯一下BoJone的家...
BoJone在一些文章中已经提到过,我是一个来自农村的孩子,目前我的家也在农村。虽然生活并不能说“贫困”,家中也添置了不少电器,不过一直没有购置的就是洗衣机和热水器。洗衣机嘛,我觉得衣服自己动手洗是很好的,至少不让自己偷懒。至于热水器,因为家在农村,所以能够比较方便地弄到一些柴草,而且稻谷收割完后的桔梗也可以当燃料用,平时烧菜一般都用烧柴草,因此热水器实在没有多大必要。(很遗憾,沼气池没有能够在这里普及起来,大家可不要责怪我排放温室气体哦...^_^)
既然没有热水器,那只能人工烧水了。往往是烧好一大锅水,洗澡时盛一盆子,然后加水降温,接着就可以洗白白了。本文的问题正是来源于调水温。当水很热时,为了加快降温,我们往往“双管齐下”:一边向盆子注入冷水,一般从盆子放出热水。于是就有了一个问题:水的温度与时间成什么关系?
历史上的谜案——刘徽有没有使用外推法?
By 苏剑林 | 2011-03-12 | 30022位读者 | 引用话说当年我国古代数学家刘徽创立“割圆术”计算圆周率的事迹,在今天已被不少学生知晓;虽不能说家喻户晓,但是也为各教科书以及老师津津乐道。和古希腊的“数学之神”阿基米德同出一辙,刘徽也是使用圆的内接、外切正多边形来逼近圆形的;不一样的是,刘徽使用的方法是计算半径为1的圆的内接、外切正多边形的面积,而阿基米德计算的则是直径为1的圆的内接、外切正多边形的周长。两者的计算效果有什么区别呢?其实阿基米德的方法应该更快一点,阿基米德算到正n边形所得到的值,相当于刘徽算到正2n边形了。
在此我们不再对两者的计算方法进行区分,因为两者的本质都是一样的。按照现代数学的写法,“割圆术”的理论依据是
$$lim_{n\to \infty} n \sin(\frac{\pi}{n})=\pi\tag{1}$$
当然,刘徽不可能有现代计算正弦函数值的公式(现在计算正弦函数值一般用泰勒级数展开,而泰勒级数展开需要用到$\pi$的值),甚至在他那个时代就连笔墨也没有,据我所知即使是后来的祖冲之推算圆周率时,唯一的计算工具也只是现在称为“算筹”的小棍。不过刘徽还是凭借着超强的毅力,利用递推的方法逐步求圆周率。
【福岛核电站】“最坏情况”有多坏?
By 苏剑林 | 2011-03-20 | 24776位读者 | 引用科学空间:2011年4月重要天象
By 苏剑林 | 2011-04-04 | 26782位读者 | 引用BoJone在之前的《自然极值》系列已经花了一定篇幅来讲述“极值”在自然界中是多么的普遍,它能够引导我们进行某些问题的思考,从而获得简单快捷的解答。接下来,我要说的一个更加令人惊讶的“事实”:“极值”不仅仅在某些数学或物理问题上给予我们创造性的思考,它甚至构建了整个经典力学乃至于整个物理学!这不是夸大其辞,这是物理学中被称为“最小作用量原理”的一个原理,很多物理学家(如费恩曼)被它深深吸引着,甚至认为它就是“上帝创造世界的终极公式”!(关于做小作用量原理,大家不妨看一下范翔所写的《最小作用量原理与物理之美》系列文章)
话说在18世纪,欧拉和拉格朗日开创了一条独特的道路,即用变分法来研究经典力学,从而使经典力学焕发出了新的活力,也由此衍生出了一个叫“理论力学”或“分析力学”的分支。用变分法研究力学有很多的好处,变分的对象一般都是标量函数,我们只需要写出动力系统的动能与势能表达式,就可以进行一系列的研究,比如列出质点的运动方程、判断平衡点的稳定性、求周期轨道等等(由于BoJone对理论力学研究还不够深入,无法举太多例子,但请相信,其作用远远不止这些),省去了不少繁琐的矢量性分析,这些都是在变分法发明前难以研究的。
重提“旋转弹簧伸长”问题(变分解法)
By 苏剑林 | 2011-04-05 | 20078位读者 | 引用感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》
在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/
今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。
最近评论