5 Aug

两道无穷级数:自然数及其平方的倒数和

证明下列级数发散或者收敛:
(1) $\sum_{x = 1}^\infty \frac{1}{x} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ...$
(2) $\sum_{x = 1}^\infty \frac{1}{x^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ...$

一眼看上去,由于$1/x,1/{x^2}$都会趋向零,所以它们应该是收敛的。真的是这样吗?

阅读剩余部分...

8 Jul

科学空间:一种有趣的平方数

数字是美丽的、极具魅力的,正如——
有这样的一种数,将其拆开成为两个数,这两个数的和的平方等于原数。例如:
$$\begin{aligned}2025=&(20+25)^2\\88209=&(88+209)^2\\152344237969=&(152344+237969)^2\\ &...\end{aligned}$$

下面是关于这类数的一些研究:

1、这类数的实质是:$(A+B)^2=10^nA+B$,而对于$(A+B)^2=kA+B$,有
$A=k/2-B\pm\sqrt{{k^2}/{4}-(k-1)B}$
因此,一般地,对于一个适合的B,可以找到两个对应的A。

阅读剩余部分...