3 Oct

《向量》系列——5.平面向量微分方程与复数

首先我们考虑一个复微分方程
$\dot{z}=f(z,t)$————(1)
如果令$z=x+yi,f(z,t)=f(x+yi,t)=g(x,y,t)+i*h(x,y,t)$,则方程对应于
$\dot{x}=g(x,y,t)$
$\dot{y}=h(x,y,t)$
这说明,二元微分方程在一定程度上等价于复微分方程。

阅读剩余部分...

27 Aug

与向量的渊源极深的四元数

当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?

当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。

阅读剩余部分...

23 Aug

《向量》系列——4.天旋地转(向量,复数,极坐标)

坐标旋转.PNG
如图,坐标(x,y)绕点(p,q)逆时针旋转θ角后得到坐标(x',y'),求x',y'关于x,y的表达式。

阅读剩余部分...

16 Aug

《方程与宇宙》:拉格朗日点,复数,向量(五)

The New Calculation Of Lagrangian Point 4,5

上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)

对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...

阅读剩余部分...

15 Aug

《方程与宇宙》:拉格朗日点的点点滴滴(四)

The New Calculation Of Lagrangian Point 1,2,3

L2_rendering.jpg关于n体问题,选择质心或其他定点为参考点,我们可以列出下面的运动方程:
$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$————(19)

现在我们只考虑三体问题。天文学家一直希望能够找到三体问题的简洁解,可是很遗憾,庞加莱已经证明了三体问题的解是混沌的,也就是说任何微小的扰动都有可能造成不可预料的后果(可以形象的比喻为:巴西的一只蝴蝶翅膀的扇动,有可能因此美国的一场龙卷风)。

阅读剩余部分...