感谢国家天文台LAMOST项目之“宇宙驿站”提供网络空间和数据库资源! 感谢国家天文台崔辰州博士等人的多方努力和技术支持!

科学空间欢迎您转载本站文章,但在转载本站原创文章时,希望您能够尊重版权,注明来自科学空间,谢谢!

参与科学空间

为了保证你的利益,推荐你注册为本站会员。同时欢迎通过邮件或留言与我探讨科学,反馈科学空间的问题。
会员注册 会员登录 >>全空间文章列表>>

23 Apr

科学空间添加新域名kexue.fm

在上个月,偶然间发现kexue.fm这个域名还没被注册,感觉挺不错的,所以赶紧把它注册了。

事实上,笔者一直以来都挺喜欢fm这个后缀的域名,因为FM也是电台的简写,fm域名的网站,从域名上就给人一种听电台般的惬意。刚好,顺手注册了kexue.fm这个域名,感觉很配本博客“科学空间”这个名字,也很符合本博客创办之初的理念——让科学流行起来——这也意味着科学会像听电台般舒服。当然,另一方面,它也更加好记。域名在大概一个月前就注册好了,但域名的备案,前前后后花了差不多一个月的时间,所以到现在才加上到科学空间中。如今科学空间的服务器也已经迁移到了阿里云。

原来的域名spaces.ac.cn也会一直保留着,双域名皆可访问。此外,申请了@spaces.ac.cn后缀邮箱的读者也不用担心,这个邮箱也会一直保留着。

欢迎大家多用新域名访问^_^

12 Apr

【语料】百度的中文问答数据集WebQA

信息抽取

众所周知,百度知道上有大量的人提了大量的问题,并且得到大量的回复。然而,百度知道上的回复者貌似懒人居多,他们往往喜欢直接在网上复制粘贴一大片来作为回答内容,而且这些内容可能跟问题相关,也可能跟问题不相关,比如

https://zhidao.baidu.com/question/557785746.html

问:广州白云山海拨多高

答:广州白云山(Guangzhou Baiyun Mountain),是新 “羊城八景”之首、国家4A级景区和国家重点风景名胜区。它位于广州市的东北部,为南粤名山之一,自古就有“羊城第一秀”之称。山体相当宽阔,由30多座山峰组成,为广东最高峰九连山的支脉。面积20.98平方公里,主峰摩星岭高382米(注:最新测绘高度为372.6米——国家测绘局,2008年),峰峦重叠,溪涧纵横,登高可俯览全市,遥望珠江。每当雨后天晴或暮春时节,山间白云缭绕,蔚为奇观,白云山之名由此得来

阅读剩余部分...

7 Apr

【不可思议的Word2Vec】 3.提取关键词

本文主要是给出了关键词的一种新的定义,并且基于Word2Vec给出了一个实现方案。这种关键词的定义是自然的、合理的,Word2Vec只是一个简化版的实现方案,可以基于同样的定义,换用其他的模型来实现。

说到提取关键词,一般会想到TF-IDF和TextRank,大家是否想过,Word2Vec还可以用来提取关键词?而且,用Word2Vec提取关键词,已经初步含有了语义上的理解,而不仅仅是简单的统计了,而且还是无监督的!

什么是关键词?

诚然,TF-IDF和TextRank是两种提取关键词的很经典的算法,它们都有一定的合理性,但问题是,如果从来没看过这两个算法的读者,会感觉简直是异想天开的结果,估计很难能够从零把它们构造出来。也就是说,这两种算法虽然看上去简单,但并不容易想到。试想一下,没有学过信息相关理论的同学,估计怎么也难以理解为什么IDF要取一个对数?为什么不是其他函数?又有多少读者会破天荒地想到,用PageRank的思路,去判断一个词的重要性?

说到底,问题就在于:提取关键词和文本摘要,看上去都是一个很自然的任务,有谁真正思考过,关键词的定义是什么?这里不是要你去查汉语词典,获得一大堆文字的定义,而是问你数学上的定义。关键词在数学上的合理定义应该是什么?或者说,我们获取关键词的目的是什么?

阅读剩余部分...

3 Apr

【不可思议的Word2Vec】 2.训练好的模型

由于后面几篇要讲解Word2Vec怎么用,因此笔者先训练好了一个Word2Vec模型。为了节约读者的时间,并且保证读者可以复现后面的结果,笔者决定把这个训练好的模型分享出来,用Gensim训练的。单纯的词向量并不大,但第一篇已经说了,我们要用到完整的Word2Vec模型,因此我将完整的模型分享出来了,包含四个文件,所以文件相对大一些。

提醒读者的是,如果你想获取完整的Word2Vec模型,又不想改源代码,那么Python的Gensim库应该是你唯一的选择,据我所知,其他版本的Word2Vec最后都是只提供词向量给我们,没有完整的模型

对于做知识挖掘来说,显然用知识库语料(如百科语料)训练的Word2Vec效果会更好。但百科语料我还在爬取中,爬完了我再训练一个模型,到时再分享。

模型概况

这个模型的大概情况如下:
$$\begin{array}{c|c}
\hline
\text{训练语料} & \text{微信公众号的文章,多领域,属于中文平衡语料}\\
\hline
\text{语料数量} & \text{800万篇,总词数达到650亿}\\
\hline
\text{模型词数} & \text{共352196词,基本是中文词,包含常见英文词}\\
\hline
\text{模型结构} & \text{Skip-Gram + Huffman Softmax}\\
\hline
\text{向量维度} & \text{256维}\\
\hline
\text{分词工具} & \text{结巴分词,加入了有50万词条的词典,关闭了新词发现}\\
\hline
\text{训练工具} & \text{Gensim的Word2Vec,服务器训练了7天}\\
\hline
\text{其他情况} & \text{窗口大小为10,最小词频是64,迭代了10次}\\
\hline
\end{array}$$

阅读剩余部分...

2 Apr

【不可思议的Word2Vec】 1.数学原理

对于了解深度学习、自然语言处理NLP的读者来说,Word2Vec可以说是家喻户晓的工具,尽管不是每一个人都用到了它,但应该大家都会听说过它——Google出品的高效率的获取词向量的工具。

Word2Vec不可思议?

大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。

但是,为什么要将它作为语言模型来看呢?抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。这几篇文章就是希望能够抛砖引玉,通过介绍Word2Vec模型本身,以及几个看上去“不可思议”的用法,来提供一些研究此类问题的新思路。

阅读剩余部分...

30 Mar

文本情感分类(四):更好的损失函数

文本情感分类其实就是一个二分类问题,事实上,对于分类模型,都会存在这样一个毛病:优化目标跟考核指标不一致。通常来说,对于分类(包括多分类),我们都会采用交叉熵作为损失函数,它的来源就是最大似然估计(参考《梯度下降和EM算法:系出同源,一脉相承》)。但是,我们最后的评估目标,并非要看交叉熵有多小,而是看模型的准确率。一般来说,交叉熵很小,准确率也会很高,但这个关系并非必然的。

要平均,不一定要拔尖

一个更通俗的例子是:一个数学老师,在努力提高同学们的平均分,但期末考核的指标却是及格率(60分及格)。假如平均分是100分(也就意味着所有同学都考到了100分),那么自然及格率是100%,这是最理想的。但现实不一定这么美好,平均分越高,只要平均分还没有达到100,那么及格率却不一定越高,比如两个人分别考40和90,那么平均分就是65,及格率只有50%;如果两个人的成绩都是60,平均分就是60,及格率却有100%。这也就是说,平均分可以作为一个目标,但这个目标并不直接跟考核目标挂钩。

那么,为了提升最后的考核目标,这个老师应该怎么做呢?很显然,首先看看所有学生中,哪些同学已经及格了,及格的同学先不管他们,而针对不及格的同学进行补课加强,这样一来,原则上来说有很多不及格的同学都能考上60分了,也有可能一些本来及格的同学考不够60分了,但这个过程可以迭代,最终使得大家都在60分以上,当然,最终的平均分不一定很高,但没办法,谁叫考核目标是及格率呢?

阅读剩余部分...

23 Mar

梯度下降和EM算法:系出同源,一脉相承

PS:本文就是梳理了梯度下降与EM算法的关系,通过同一种思路,推导了普通的梯度下降法、pLSA中的EM算法、K-Means中的EM算法,以此表明它们基本都是同一个东西的不同方面,所谓“横看成岭侧成峰,远近高低各不同”罢了。

在机器学习中,通常都会将我们所要求解的问题表示为一个带有未知参数的损失函数(Loss),如平均平方误差(MSE),然后想办法求解这个函数的最小值,来得到最佳的参数值,从而完成建模。因将函数乘以-1后,最大值也就变成了最小值,因此一律归为最小值来说。如何求函数的最小值,在机器学习领域里,一般会流传两个大的方向:1、梯度下降;2、EM算法,也就是最大期望算法,一般用于复杂的最大似然问题的求解。

在通常的教程中,会将这两个方法描述得迥然不同,就像两大体系在分庭抗礼那样,而EM算法更是被描述得玄乎其玄的感觉。但事实上,这两个方法,都是同一个思路的不同例子而已,所谓“本是同根生”,它们就是一脉相承的东西。

让我们,先从远古的牛顿法谈起。

牛顿迭代法

给定一个复杂的非线性函数$f(x)$,希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足$f'(x_0)=0$,然后可以转化为求方程$f'(x)=0$的根了。非线性方程的根我们有个牛顿法,所以
$$x_{n+1} = x_{n} - \frac{f'(x_n)}{f''(x_n)}$$

阅读剩余部分...

14 Mar

泰迪杯赛前培训之数据挖掘与建模“慢谈”

泰迪杯赛前培训.png应广州泰迪科技公司之邀,给泰迪杯数据挖掘竞赛录制了赛前培训视频,内容基本上是各种常见的数学模型及入门用法,以一种比较独特的思路,将朴素贝叶斯、HMM、逻辑回归、组合模型、神经网络、深度学习等等串了起来。视频讲解难度为入门级,当然,真的要融合贯通所有内容,恐怕要骨灰级。

不管怎么样,简单分享一下,欢迎大家留言讨论、建议甚至批评。

PPT下载:泰迪杯赛前培训ppt.zip
视频地址:http://moodle.tipdm.com/course/view.php?id=18