阿达马不等式
设有$n$阶实矩阵$\mathbf{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \mathbf{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$

这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。

可是,不论是教科书上的提示还是我在互联网上搜索到的资料(比如本文附件的文章),它们几乎都是千篇一律使用正定矩阵的思想来做的。但是这个几何意义如此明显的、如此基本的不等式,为了证明它却需要正定矩阵知识的奠基,不能不说是一种本末倒置。这也反映了国内不少数学工作者缺乏数学思想、人云亦云的不良作风。(第一个人这么做了,大量的人也就跟着做了,就算方法略有不同,还是没有改变原来的路子。)事实上,完全不需要正定矩阵,只通过一个很几何的方法就可以证明这道不等式。

最佳坐标系
将一个矩阵看成是$n$个列向量$\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n$的集合:
$$\begin{equation}
\mathbf{A}=[\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n]
\end{equation}$$

为了求得这$n$个列向量所构成的平行$n$维体的体积,我们需要把原来的坐标系稍微转动一下,也就是说,换一个直角坐标系,使得这$n$个向量的形式更为简单。而用代数的语言说,那就是找一个正交矩阵$\mathbf{U}$,使得$\mathbf{A}=\mathbf{U}\mathbf{T}$,$\mathbf{T}$的形式尽可能简单(容易计算行列式)。

什么坐标系才是最优的呢?设$\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n$为新坐标系的基,它们当然也是两两正交的单位向量。(只有这样才保持体积不变,用代数的语言就是正交变换保持行列式不变。)。很自然的,我们选取其中一个向量,比如$\mathbf{e}_1=\frac{\mathbf{a}_1}{|\mathbf{a}_1|}$,为一条坐标轴,那么$\mathbf{a}_1$有最简单的表达式;为使$\mathbf{a}_2$的表达式尽可能简单,我们应该让$\mathbf{a}_2$位于一个坐标平面上,从构造的角度来讲,那就是从$\mathbf{e}_1$和$\mathbf{a}_2$出发构造一个向量,使得它就是$\mathbf{e}_2$轴,这样子$\mathbf{a}_2$就是$\mathbf{e}_1$和$\mathbf{e}_2$的线性组合。同样地,为使得$\mathbf{a}_3$表达式尽可能简单,那么$\mathbf{a}_3$应该要表示为$\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$的线性组合,这等价于用$\mathbf{a}_1,\mathbf{a}_2,\mathbf{a}_3$构造出$\mathbf{e}_3$ 来。将这个过程一直进行下去,那么其实就是向量$\{\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n\}$的规范正交化过程了!

也就是说由$\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n$规范正交化得到的向量组$\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n$是表示原来向量的一个最佳的直角坐标系之一了。这个向量组构成了一个正交矩阵$\mathbf{U}$
$$\begin{equation}
\mathbf{U}=[\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n]
\end{equation}$$

在此坐标系之下,有
$$\begin{equation}
\mathbf{A}=[\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_n]=[\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n]\mathbf{T}=\mathbf{U}\mathbf{T}
\end{equation}$$
其中
$$\begin{equation}
\mathbf{T}=\left[ {\begin{array}{*{20}{c}}
{\lambda_1}&{*}&{\dots}&{*}\\
{}&{\lambda_2}&{\dots}&{*}\\
{}&{}&{\ddots}&{\vdots}\\
{0}&{}&{}&{\lambda_n}
\end{array}} \right]
\end{equation}$$
是一个上三角形阵。

完成证明
有了上面的结论,那么阿达马不等式的证明就很简单了。因为$\mathbf{U}$是正交矩阵,自然有
$$\begin{equation}
\begin{array}{l}
\left| {\mathbf{a}_1} \right| = \left| {\left( \lambda_1 \right)} \right|\geq \lambda_1,\left| {\mathbf{a}_2} \right| = \left| {\left( {\begin{array}{*{20}{c}}
*\\
\lambda_2
\end{array}} \right)} \right|\geq \lambda_2\\
\dots
\\
\left| {\mathbf{a}_n} \right| = \left| {\left( {\begin{array}{*{20}{c}}
\begin{array}{l}
*\\
*\\
\vdots
\end{array}\\
\lambda_n
\end{array}} \right)} \right|\geq \lambda_n
\end{array}
\end{equation}$$

所以
$$\begin{equation}
\begin{aligned}
(\det\mathbf{A})^2&=(\det\mathbf{T})^2=(\lambda_1 \lambda_2 \dots\lambda_n)^2\\
&\leq |\mathbf{a}_1|^2 |\mathbf{a}_2|^2 \dots |\mathbf{a}_n|^2\\
&=\prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{aligned}
\end{equation}$$
这就完成了阿达马不等式的证明。一个几何的证明!

结束语
学习高等代数,尤其是学习矩阵相关的理论,要紧紧抓住它的几何意义,这是非常有益处且非常有必要的,对此我深有感悟。不论是从记忆还是推理的角度来讲,几何都给了我们最直观的思路,使得我们不至于对一个概念完全没有任何头绪的接受。不管怎样强调都不为过的是:死记硬背在数学中是没有用的。

附件:
阿达玛_Hadamard_不等式的证明及几何意义.pdf


转载到请包括本文地址:http://spaces.ac.cn/archives/2215/

如果您觉得本文还不错,欢迎点击下面的按钮对博主进行打赏。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!